
Bullet Proofing Your Build Chain
Using Open Source Tools

Presentation on using SCons, Schematron and
Cruise Control in the build pipeline.

By A.E.Bailey, CTO, Tantalus.
Credit – N. McVeity, Lead Programmer, Tantalus.

email:andrew@tantalus.com.au

Overview
● Disclaimer – case study - depth (not tutorial, really

overview)
● Background
● Build pipeline overview
● XML / XSLT overview
● Introduce tool set, backwards

− CruiseControl
− Schematron
− SCons

● Conclusion
● Questions

Background
● GCAP 06 round table
● Old Project Post-mortem
● New Project Pre-production

Build pipeline overview

● The build pipeline is a series of builds, each
performing some specific task. The output of
one build becomes the input of the next.

Code Build pipeline example

Art Build pipeline example

XML
● The Extensible Markup Language (XML) is a general-purpose markup

language. It is classified as an extensible language because it allows its
users to define their own tags. Its primary purpose is to facilitate the sharing
of structured data across different information systems, particularly via the
Internet.[2] It is used both to encode documents and serialize data.
(http://en.wikipedia.org/wiki/XML)

● Lots of editing tool support, from MS-IDE to
freeware.

● Easy to write basic XML, even without help of a
library, using just plain text.

● A number of reader and parsing technologies
available.

● Ever growing application usage of XML.

XSLT & XPath
● Extensible Stylesheet Language Transformations (XSLT) is an XML-

based language used for the transformation of XML documents into
other XML or "human-readable" documents

● XPath (XML Path Language) is an expression language for
addressing portions of an XML document, or for computing values
(strings, numbers, or boolean values) based on the content of an
XML document.

CruiseControl
● URL: http://cruisecontrol.sourceforge.net/
● What is?
● Why do it?
● How does it work?

− Server Configuration – Build Loop
− Reporting
− Client Dashboard

● .Net version URL:
http://confluence.public.thoughtworks.org/displa
y/CCNET/Welcome+to+CruiseControl.NET

CruiseControl.Net
● Features

− XML configuration.
− Central repository interface.

● Sync
● Labelling
● Blame game

− XML reports
− Chaining. Build to regression tests.

CruiseControl.Net
<cruisecontrol>
 <project name="cars2 branch-dev" workingDirectory="c:\projects\cars2\branch-dev">
 <webURL>\\buildslave1\logs\cars2\branch-dev</webURL>
 <modificationDelaySeconds>10</modificationDelaySeconds>
 <sourcecontrol type="p4">
 <view>//depot/cars2/branch-dev/...</view>
 <client>buildslave_xp</client>
 </sourcecontrol>
 <tasks>
 <exec>
 <executable>.\tools\bin\make.exe</executable>
 <baseDirectory>c:\projects\cars2\branch-dev</baseDirectory>
 <buildArgs>BUILD=DEBUG</buildArgs>
 <buildTimeoutSeconds>3600</buildTimeoutSeconds>
 </exec>
 <exec>
 <executable>.\tools\bin\make.exe</executable>
 <baseDirectory>c:\projects\cars2\branch-dev</baseDirectory>
 <buildArgs>BUILD=RETAIL unit_tests</buildArgs>
 <buildTimeoutSeconds>3600</buildTimeoutSeconds>
 </exec>
 <exec>
 <executable>p4.exe</executable>
 <buildArgs>labelsync -l cars2-buildslave-success //...</buildArgs>
 </exec>
 </tasks>
 <publishers>
 <xmllogger logDir="c:\logs\cars2\branch-dev" />
 </publishers>
 </project>
</cruisecontrol>

CruiseControl.Net

Client experience

Schematron
● URL: http://www.schematron.com/
● What is it?
● Why do it?
● How does it work?

Schematron
● Data Flow

schema.xslt
schematron.xslt

(meta-
stylesheet)

validator.xslt

document.xml validator.xslt Validation
Report

Generating a Validating Stylesheet

Validating a Document

Schematron
● Example

Schematron
● Example

Schematron
● Example

Schematron
● Example

Schematron
● Example

SCons
● URL: http://www.scons.org/
● Build tool

− The SCons utility builds software (or other files) by
determining which component pieces must be rebuilt and
executing the necessary commands to rebuild them.

− Replacement for MAKE, but oh so much more.
− Written in Python (http://www.python.org/),
− And 'scripted' in Python.

SCons Features

● Main features from Tantalus point of view.
− MD5 instead of timestamps.
− Build Cache

● Shared build.
− Automatic and extensible dependency generation.

● Very important when most of your tool-set is custom.
− Build processes can be Python functions, as well as

external processes.
− Multiple targets from a build process.
− 'Tools' allow reuse.

SCons Features

● Other features.
− Direct build from central repositories.
− Parallel builds.

SCons
● Issues

− Speed
● Slow startup time, compared to make.

− However, false economy, when cache taken into account.
− Subset targets, caching.

● Python profiler plus –debug with 14 metrics.
− Not Final (version < 1.0)

● Bugs - support.
● Upgrading to new version maintenance.

SCons
● Case Study Results

− Size of script.
− lines code doc comment blank file
− 1617 1028 89 138 362 SConstruct
− 1418 897 81 107 333 tantalus_undisclosedproject.py
− 112 56 36 0 20 tantalus_fmod.py
− 48 23 12 2 11 tantalus_havok.py
− 37 18 12 0 7 tantalus_lua.py
− 897 526 84 92 195 tantalus_maya.py
− 227 139 17 20 51 tantalus_mercury.py
− 114 64 7 14 29 tantalus_revolution.py
− 90 57 7 1 25 tantalus_schematron.py
− 110 68 13 2 27 tantalus_utils.py
− 105 62 17 3 23 tantalus_xml.py
− 4775 2938 375 379 1083 total

SCons
● Case Study Results

− Python mania.
● One large process.

 Issues with this.
● Memory leaks.

● Reduces steps, hence build rules, dependency tree etc.

SCons
● Case Study Results

− Cruise Control 'Integration'.
● Distributed / parallel build.

− Large projects
● From monolithic script to reusable modules.

Code Build pipeline

Art Build pipeline

Conclusion
● CruiseControl

− Continuous Integration really is a must, and this is a really good
way to do it.

− Easy to set up.
● Schematron

− As of writing this has been set up and is part of the pipeline, but
not really given a rich set of rules yet.

− At the start of a project, it can be a bit harsh enforcing rules which
are arbitrary at the time.

Conclusion
● SCons

− A larger task than originally envisioned.
● Learning curve, more jargon, we wrote the SConstruct file

twice. Included learning Python.
− Distributed, parallel build system for free.
− Improved our build pipeline:-

● Fully integrated
● Reusable
● Documented

● Python
− Custom tool set integration we didn't see coming.

Questions
● URL's

− http://en.wikipedia.org/wiki/XML
− http://en.wikipedia.org/wiki/XSLT
− http://cruisecontrol.sourceforge.net/
− http://confluence.public.thoughtworks.org/display/C

CNET/Welcome+to+CruiseControl.NET
− http://www.schematron.com/
− http://www.scons.org/
− http://www.python.org/

